Blocking Interleukin-4 Receptor α Using Polyethylene Glycol Functionalized Superparamagnetic Iron Oxide Nanocarriers to Inhibit Breast Cancer Cell Proliferation
نویسندگان
چکیده
PURPOSE The specific targeting of interleukin-4 receptor α (IL4Rα) receptor offers a promising therapeutic approach for inhibition of tumor cell progression in breast cancer patients. In the current study, the in vitro efficacy of superparamagnetic iron oxide nanoparticles conjugated with anti-IL4Rα blocking antibodies (SPION-IL4Rα) via polyethylene glycol polymers was evaluated in 4T1 breast cancer cells. MATERIALS AND METHODS Cell viability, reactive oxygen species generation, and apoptosis frequency were assessed in vitro in 4T1 cancer cell lines following exposure to SPION-IL4Rα alone or combined with doxorubicin. In addition, immunofluorescence assessments and fluorimetrywere performed to confirm the specific targeting and interaction of the developed nanocarriers with IL4Rα receptors in breast cancer cells. RESULTS Blocking of IL4Rα receptors caused a significant decrease in cell viability and induced apoptosis in 4T1 cells. In addition, combined treatment with SPION-IL4Rα+doxorubicin caused significant increases in cell death, apoptosis, and oxidative stress compared to either SPION-IL4Rα or doxorubicin alone, indicating the enhanced therapeutic efficacy of this combination. The decrease in fluorescence intensity upon immunofluorescence and fluorimetry assays combined with increased viability and decreased apoptosis following the blocking of IL4Rα receptors confirmed the successful binding of the synthesized nanocarriers to the target sites on murine 4T1 breast cancerous cells. CONCLUSION These results suggest that SPION-IL4Rα nanocarriers might be used for successfulreduction of tumor growth and inhibition of progression of metastasis in vivo.
منابع مشابه
Magnetic iron oxide nanoparticles, Polyethylene glycol, Surfactant, Superparamagnetic, Chemical co-precipitation
In this study, magnetic iron oxide nanoparticles (Fe3O4) with the size range of 20-30 nm were prepared by the modified controlled chemical co-precipitation method from the solution of ferrous/ferric mixed salt-solution in alkaline medium. In this process polyethylene glycol was used as a surfactant to prevent the solution from agglomeration. The prepared magnetic nanoparticles were characterize...
متن کاملDevelopment of an MRI-visible nonviral vector for siRNA delivery targeting gastric cancer
An antibody-directed nonviral vector, polyethylene glycol-grafted polyethylenimine functionalized with superparamagnetic iron oxide nanoparticles and a gastric cancer-associated CD44v6 single-chain variable fragment (scFv(CD44v6),-PEG-g-PEI-SPION), was constructed as a gastric cancer-targeting and magnetic resonance imaging (MRI)-visible nanocarrier for small interfering RNA (siRNA) delivery. B...
متن کاملIn Vitro Sustained Release Study of Gallic Acid Coated with Magnetite-PEG and Magnetite-PVA for Drug Delivery System
The efficacy of two nanocarriers polyethylene glycol and polyvinyl alcohol magnetic nanoparticles coated with gallic acid (GA) was accomplished via X-ray diffraction, infrared spectroscopy, magnetic measurements, thermal analysis, and TEM. X-ray diffraction and TEM results showed that Fe3O4 nanoparticles were pure iron oxide having spherical shape with the average diameter of 9 nm, compared wit...
متن کاملFolic acid-functionalized polyethylenimine superparamagnetic iron oxide nanoparticles as theranostic agents for magnetic resonance imaging and PD-L1 siRNA delivery for gastric cancer
Programmed death ligand-1 (PD-L1), which is highly expressed in gastric cancers, interacts with programmed death-1 (PD-1) on T cells and is involved in T-cell immune resistance. To increase the therapeutic safety and accuracy of PD-1/PD-L1 blockade, RNA interference through targeted gene delivery was performed in our study. We developed folic acid (FA)- and disulfide (SS)-polyethylene glycol (P...
متن کاملThe Effects of Synthesized Superparamagnetic Iron Oxide Nanoparticles and Electromagnetic Field on Cell Death of MCF-7 Breast Cancer Cell Line
Introduction: Iron oxide nanoparticles, owing to their very small size and superparamagnetic properties, have been considered a potential candidate for several medical applications such as magnetic cell separation, magnetic resonance imaging (MRI), magnetic targeted drug delivery magnetichyperthermia. The present study aimed to synthesize and evaluate the characteristics of super...
متن کامل